(US RTK)—Titanium dioxide is the most widely used whitening pigment in the world and has been linked to adverse health effects, particularly genotoxicity and intestinal inflammation. It is applied as food coloring and a whitening agent to a wide variety of foods, including chewing gum, cakes, candies, breads and ice cream.
Because of health risks, France banned titanium dioxide as a food additive in 2020. Two years later the European Union also banned titanium dioxide as a food additive.
But in the U.S., titanium dioxide is found all over the grocery shelves. Candy like Skittles, Starbursts, and Jell-O, gum like Trident White peppermint gum and Mentos Freshmint Gum, cake products like Duncan Hines Creamy Vanilla Frosting, and Nabisco Chips Ahoy! cookies are just a few of the myriad food items that contain the additive.
A significant body of research, mostly from rodent models and in vitro studies, has linked titanium dioxide with health risks related to the gut, including intestinal inflammation, alterations to the gut microbiota, and more. It is classified by the International Agency for Research on Cancer (IARC) in Group 2B, as possibly carcinogenic to humans.
As a food additive, titanium dioxide and its nanoparticles in particular have been associated with DNA damage and cell mutations, which in turn, have potential to cause cancer. When used as a food coloring, it is known as E171.
With the rise of nanotechnology, research in recent years has also shown the dangers of titanium dioxide (TiO2) nanoparticles, and their genotoxicity, which refers to a chemical agent’s ability to harm or damage DNA in cells, thus potentially causing cancer.
Nanoparticles
Over the last several years, nanoparticles have come under scrutiny for adverse health effects. Nanoparticles are ultrafine particles between 1 to 100 nanometers in diameter. (To put this in perspective, the average human hair is around 80,000 nanometers thick.) Because of their size, which can be engineered and manipulated at the atomic or molecular level, nanoparticles exhibit unique physical, chemical, and biological properties. Titanium dioxide is one of the most commonly produced nanoparticles in the world.
Studies of titanium dioxide as a food additive suggest health dangers
Genotoxicity and cytotoxicity
Numerous studies have linked titanium dioxide to genotoxicity and cytotoxicity. Genotoxicity refers to a chemical’s potential to cause DNA damage, which can, in turn, lead to cancer. Cytotoxicity is a general term that refers to a characteristic of being harmful to cells.
French researchers studied how and where E171 nanoparticles enter the bloodstream, first studying the route through pigs and then in vitro with human buccal cells, for a 2023 study published in the journal Nanotoxicology. The research showed that the nanoparticles absorbed quickly through the mouth and then into the bloodstream, before damaging DNA and hindering cell regeneration.
In a 2016 study published in Scientifica (Cairo), Egyptian researchers examined the effects of titanium dioxide nanoparticles on the organs of mice by orally administering the food additive daily, for five days. The results showed that the exposure produced “mild to moderate changes in the cytoarchitecture of brain tissue in a time dependent manner.” Furthermore, “Comet assay revealed the apoptotic DNA fragmentation, while PCR-SSCP pattern and direct sequencing showed point mutation of Presenilin 1 gene at exon 5, gene linked to inherited forms of Alzheimer’s disease.” The researchers wrote: “From these findings, “the present study concluded that TiO2NPs is genotoxic and mutagenic to brain tissue which in turn might lead to Alzheimer’s disease incidence.”
For research published in 2022 study in the journal Food and Chemical Toxicology, scientists examined “the genotoxicity and the intracellular reactive oxygen species induction by physiologically relevant concentrations of three different TiO2 nanomaterials in Caco-2 and HT29-MTX-E12 intestinal cells, while considering the potential influence of the digestion process in the NMs’ physiochemical characteristics.” They found a “DNA-damaging effect dependent on the nanomaterial,” along with the micronucleus assay suggesting “effects on chromosomal integrity, an indicator of cancer risk, in the HT29-MTX-E12 cells, for all the tested TiO2 nanomaterials.” Researchers concluded that the results showcase “evidence of concern” regarding titanium dioxide used as a food additive.
In a study published in the journal Toxicology, researchers examined the effects of exposing human colon cancer cell line (HTC116) titanium dioxide food additives in vitro. “In the absence of cytotoxicity, E171 was accumulated in the cells after 24 hours of exposure, increasing granularity and reactive oxygen species, inducing alterations in the molecular pattern of nucleic acids and lipids, and causing nuclei enlargement, DNA damage and tubulin depolymerization,” the scientists wrote. Researchers removed the additive from the culture, then examined the results 48 hours later. They found, “The removal of E171 was unable to revert the alterations found after 24 h of exposure in colon cells. In conclusion, exposure to E171 causes alterations that cannot be reverted after 48 h if E171 is removed from colon cells.”
A review published in 2022 in the journal NanoImpact evaluated the latest research related to genotoxic effects of titanium dioxide through in vivo studies and in vitro cell tests. Researchers summarized the results by stating TiO2 nanoparticles “could induce genotoxicity prior to cytotoxicity,” and “are likely to be genotoxic to humans.”
Inflammation of the intestines
Animal studies have shown that, when consumed as a food additive, titanium dioxide can induce intestinal inflammation.
In a 2019 study published in the journal Nanotoxicology, researchers recreated the first phase of digestion in mice and fed them titanium dioxide, then examined whether accumulation occurred in the organs. Researchers wrote: “Significant accumulation of titanium was observed in the liver and intestine of E171-fed mice; in the latter a threefold increase in the number of TiO2 particles was also measured. Titanium accumulation in the liver was associated with necroinflammatory foci containing tissue monocytes/macrophages. Three days after the last dose, increased superoxide production and inflammation were observed in the stomach and intestine. Overall, [this] indicates that the risk for human health associated with dietary exposure to E171 needs to be carefully considered.”
A study published in the Journal of Agricultural and Food Chemistry in 2019 sought to examine the effects of titanium dioxide on intestinal inflammation. Researchers did this by feeding rats titanium dioxide nanoparticles and found that, after the course of two to three months, the animals had lower body weights and induced intestinal inflammation. The researchers also found the nanoparticles altered gut microbiota composition and aggravated chronic colitis. The rats also experienced reduced populations of CD4+T cells (which are cells that help organize immune responses by prompting other immune cells to fight infection), regulatory T cells, and white blood cells in mesenteric lymph nodes. The researchers wrote: “Dietary TiO2 nanoparticles could interfere with the balance of the immune system and dynamic of gut microbiome, which may result in low-grade intestinal inflammation and aggravated immunological response to external stimulus, thus introducing potential health risk.”
For a mini-review published in the journal Particle and Fibre Technology in 2021, scientists wanted to evaluate whether Ti02 particles contributed to the development and/or exacerbation of irritable bowel disease, and whether they altered the four elements of intestinal barrier function: the intestinal microbiota, the immune system, the mucus layer, and the epithelium. The breakdown of these four elements can contribute to autoimmune, neurological, inflammatory, infectious, and metabolic diseases. Following their review, the researchers concluded: “Data indicate that TiO2 is able to alter the four compartments of IBF and to induce a low-grade intestinal inflammation associated or not with pre-neoplastic lesions.”
Neurotoxicity
Scientists analyzed research that examined how titanium dioxide nanoparticles interact with the brain for a 2015 review published in Nanoscale Research Letters. The researchers wrote: “Once the TiO2 NPs are translocated into the central nervous system through [certain] pathways, they may accumulate in the brain regions. For their slow elimination rates, those NPs could remain in the brain zones for a long period, and the Ti contents would gradually increase with repeated exposure.” After reviewing dozens of studies, the scientists concluded: “Long-term or chronic exposure to TiO2 nanoparticles could potentially lead to the gradually increased Ti contents in the brain, which may eventually induce impairments on the neurons and glial cells and lead to CNS dysfunction as a consequence.”
For research published in Archives of Toxicology in 2020, scientists fed one group of mice a solution containing titanium dioxide for one month, and compared it to those that did not receive the additive. They found “the richness and evenness of gut microbiota were remarkably decreased and the gut microbial community compositions were significantly changed” in the titanium dioxide group when compared with the control group. The tests also revealed that the titanium dioxide exposure could cause locomotor dysfunction, or mobility issues “by elevating the excitement of enteric neurons, which might spread to the brain via gut-brain communication by vagal pathway.” The researchers concluded: “These findings provide valuable insights into the novel mechanism of TiO2NP-induced neurotoxicity. Understanding the microbiota-gut-brain axis will provide the foundation for potential therapeutic or prevention approaches against TiO2NP-induced gut and brain-related disorders.”
In a 2020 study published in the Journal of Trace Elements in Medicine and Biology, researchers conducted an in vitro experiment to analyze the effects of TiO2 nanoparticles on a human neuroblastoma (SH-SY5Y) cell line. The scientists evaluated “reactive oxygen species (ROS) generation, apoptosis, cellular antioxidant response, endoplasmic reticulum stress and autophagy.” The results showed that exposure to the nanoparticles “induced ROS generation in a dose dependent manner, with values reaching up to 10 fold those of controls. Nrf2 nuclear localization and autophagy also increased in a dose dependent manner. Apoptosis increased by 4- to 10-fold compared to the control group, depending on the dose employed.”
Promotion of obesity-related metabolic disorders
For a review published in 2023 in the journal Environmental Pollution, researchers examined E171 as a possible factor promoting obesity-related metabolic disorders. Because gut microbiota play an important role in immune function maintenance and development, and because titanium dioxide as a food additive has been shown to alter gut microbiota, researchers wanted to review “the dysregulations along the gut microbiota-immune system axis after oral TiO2 exposure compared to those reported in obese or diabetic patients, and to highlight potential mechanisms by which foodborne TiO2 nanoparticles may increase the susceptibility to develop obesity-related metabolic disorders.” The study authors discovered recurrent changes in the gut microbiota composition when exposed to titanium dioxide nanoparticles, with an imbalance of intestinal symbiotic microbiota. These changes and imbalances were also reported and played a role in the development of obesity, the authors wrote. This highlights “foodborne TiO2 nanoparticles as an endocrine disruptor-like chemical promoting obesity-related disorders,” the authors concluded.
Colorectal tumors and preneoplastic lesions
In a study published in the journal Food and Chemical Toxicology in 2016, researchers investigated whether titanium dioxide exposure led to an increase in colorectal tumor creation in mice by using a colitis associated cancer model. By measuring tumor progression markers, the researchers found that mice given titanium dioxide experienced enhanced tumor formation in the distal colon. There was also a decrease of cells that act as a protective barrier in the colon. The researchers wrote: “These results suggest that E171 could worsen pre-existent intestinal diseases.”
Coffee the Christian way: Promised Grounds
In a 2017 study published in Scientific Reports, researchers exposed rats to human-relevant levels of E171 to examine the effects of intestinal inflammation and carcinogenesis. They saw that “a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model.” They continued: “Stimulation of immune cells isolated from Peyer’s Patches [which are clusters of lymphoid follicles found in the intestine] showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased,” researchers wrote. “A 100-day titanium dioxide treatment promoted colon microinflammation and initiated preneoplastic lesions.” The scientists concluded: “These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO2 from dietary sources.”
Alterations in gut microbiota
Research has shown that, when ingested as a food additive, titanium dioxide and its nanoparticles can impact, alter, and/or damage important protective bacteria in the gut, along with the metabolic pathways of gut bacteria.
A 2023 study published in the journal Environmental Research, scientists examined the effect of titanium dioxide nanoparticles on important gut bacteria in mice. Their results showed “the growth inhibitory effects could be associated with cell membrane damage caused by titanium dioxide nanoparticles to the bacterial strains. Metabolomics analysis showed that TiO2 NPs caused alterations in multiple metabolic pathways of gut bacteria, such as tryptophan and arginine metabolism, which were demonstrated to play crucial roles in regulating gut and host health.” The researchers also found that four different neuroprotective metabolites “were significantly reduced” in urine and in vitro bacteria and vivo urine samples. The researchers concluded: “Increasing evidence implies that the gut microbiome plays a profound role in regulating host metabolism. Our results illustrated that TiO2 NPs hindered the growth of four beneficial gut bacterial strains.”
Australian researchers examined how titanium dioxide as a food additive affected gut microbiota in mice by orally administering it in drinking water. The study, published in the journal Frontiers in Nutrition in 2019, found the treatment could “alter the release of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria in vitro by promoting biofilm formation. We also found reduced expression of the colonic mucin 2 gene, a key component of the intestinal mucus layer, and increased expression of the beta defensin gene, indicating that titanium dioxide significantly impacts gut homeostasis.” The changes were then linked to colonic inflammation, along with a higher expression of inflammatory cytokines, which are signal proteins that help with regulation. The researchers concluded that titanium dioxide “impairs gut homeostasis which may in turn prime the host for disease development.”
In a small study published in the European Journal of Nutrition in 2020, researchers examined the effects of several food additives, including titanium dioxide, along with artificial sweeteners and cleaning products by testing the fecal samples of 13 people. Titanium dioxide was among the samples that “induced significant shifts in microbiome community structure.” The growth of the bacterium species belonging to C. leptum, which has been shown to decrease in patients with inflammatory bowel disease, “significantly decreased in the presence of … titanium dioxide” among other additives and sweeteners tested.
In a study published in the journal Environmental Toxicology and Pharmacology in 2020, researchers examined the effects of food additives titanium dioxide and silica on the intestinal tract by grouping and feeding mice three different food-grade particles — micro-TiO2, nano-TiO2, and nano-SiO2. With all three groups, researchers observed changes in the gut microbiota, particularly mucus-associated bacteria. Furthermore, all three groups experienced inflammatory damage to the intestine, but the nano-TiO2 displayed the most pronounced changes. The researchers wrote: “Our results suggest that the toxic effects on the intestine were due to reduced intestinal mucus barrier function and an increase in metabolite lipopolysaccharides which activated the expression of inflammatory factors downstream. In mice exposed to nano-TiO2, the intestinal PKC/TLR4/NF-κB signaling pathway was activated. These findings will raise awareness of toxicities associated with the use of food-grade TiO2 and SiO2.”
Increased severity of ulcerative colitis
A 2023 study published in the journal Particle and Fibre Toxicology set out to examine the impact of titanium dioxide nanoparticles in mice “on the course and prognosis of ulcerative colitis,” by creating an ulcerative colitis disease model. Researchers found that the titanium dioxide nanoparticles significantly increased the severity of colitis. They also “decreased the body weight, increased the disease activity index and colonic mucosa damage index scores, shortened the colonic length, increased the inflammatory infiltration in the colon.” Researchers concluded: “Oral intake of TiO2 nanoparticles could affect the course of acute colitis in exacerbating the development of ulcerative colitis, prolonging the ulcerative colitis course and inhibiting ulcerative colitis recovery.”
Atherosclerosis
In a 2022 study published in the Journal of Hazardous Materials, scientists wanted to examine the effects of titanium dioxide as a food additive on atherosclerosis in mice. (Atherosclerosis refers to a hardening of the arteries.) Researchers fed mice 40 mg/kg of the food additive every day for 4 months, and found that it not only altered gut microbiota but also led to a significantly increased atherosclerotic lesion area, especially in animals that consumed a high-choline western diet (HCD).
Promotion of noncancerous tumors
Mexican researchers sought to evaluate the effects of E171 across a span of conditions in mice, including its influence on behavior, along with the effects on the colon and liver. The research, published in 2020 in the journal Food and Chemical Toxicology, showed that E171 promoted anxiety and induced adenomas, or noncancerous tumors, in the colon. They also found that E171 heightened goblet cells hypertrophy and hyperplasia, which is typically seen in asthma patients and triggered by smoking or external pollutants and toxins. They also noted mucins overexpression in the mice, which can be linked to cancer cell formation.
Breathing problems in offspring
In a study published in 2022 in the journal Particle and Fibre Technology, researchers examined the impact of maternal exposure to titanium dioxide nanoparticles in newborn offspring mice. They found that “a chronic exposure to TiO2 NPs during pregnancy alters the respiratory activity of offspring, characterized by an abnormally elevated rate of breathing.” Breathing was also shown to be “significantly and abnormally accelerated,” and the ability for neural circuitry to effectively adjust breathing rates was impaired. The researchers concluded: “Our findings thus demonstrate that a maternal exposure to TiO2 NPs during pregnancy affects the normal development and operation of the respiratory centers in progeny.”
Decreased Vitamin D bioaccessibility
In a 2021, Chinese researchers examined the impact of E171 on lipid digestion and vitamin D3 bioaccessibility in a simulated human gastrointestinal tract model. They examined Vitamin D’s bioaccessibility, or the amount it was released in the gastrointestinal tract, becoming available for absorption, and found it “significantly decreased from 80% to 74%” with the addition of E171. In the experiment, E171 decreased lipid digestion dose-dependently. Researchers wrote: “The findings of this study enhance our understanding toward the potential impact of E171 on the nutritional attributes of foods for human digestion health.” The study was published in the Journal of Agricultural and Food Chemistry,
Exposure to titanium dioxide in utero and in breastfeeding children
In a review published in 2022 in the journal Archives of Toxicology, researchers found that the ingestion of E171 is a “a definite health risk for consumers and their progeny.” After reviewing dozens of in vivo, ex vivo and in vitro studies on the toxicity of E171, the researchers wrote that two facts must be noted: “First, reprotoxicity studies show that animals of both sexes are impacted by the toxicity of these nanoparticles, underlining the importance of conducting in vivo studies using both male and female animals. Second, human exposure begins in utero via maternal-fetal transfer and continues after birth by breastfeeding. Children are then chronically re-exposed due to their food preferences. To be relevant to the human in vivo situation, experimental studies should therefore consider nanoparticle exposure with respect to the age or life period of the studied population.”
What exactly is titanium dioxide?
Titanium dioxide (TiO2) is a chemically inert inorganic compound and an insoluble white solid that occurs naturally in several minerals, including rutile, anatase, and brookite. It is created synthetically from the mineral ilmenite. It is an insoluble white solid. Anatase, when compared to brookite and routine, has the most industrial applications, but it is the most toxic form of TiO2.
There are several manufacturers of titanium dioxide as a color agent; the largest include Delaware-based Chemours (a spin-off of DuPont Chemical, UK-based Venator, Texas-based Kronos, and Connecticut-based Tronox. As a color agent, it is called Pigment White 6 (PW6), titanium white, or CI 77891.
In the U.S., titanium dioxide is legal and used extensively as an additive in foodstuff; it is categorized as GRAS, or “generally recognized as safe,” under U.S. FDA guidelines.
Nanotoxicology
Nanotoxicology “focuses on determining the adverse effects of nanomaterials on human health and the environment.”
In general, nanoparticles have been shown to accumulate in the body, particularly in organs in the gastrointestinal tract, along with the liver, spleen, and capillaries of the lungs.
Titanium dioxide nanoparticles are commonly found in a wide-range of consumer goods, including cosmetics, sunscreens, paints and colorings, ceramics, glass, textiles, construction materials, medicine, food, food packaging, and more. In Europe, cosmetic companies are required to label products that contain nanoparticles. In the U.S., companies are not.
In 2017, French researchers from the Institut National de la Recherche Agronomique (INRAE) were among the first to examine the effects of E171 nanoparticles on the body. They fed rats a dose of 10mg of E171 per kilogram of body weight per day, which was similar to human exposure in food. The research, which was published in Scientific Reports, showed that E171 was able to traverse the intestinal barrier, pass into the bloodstream, and reach other areas of the body in rats. Researchers also found a link between immune system disorders and the absorption of titanium dioxide nanoparticles.
Titanium dioxide nanoparticles have also been found in human placentae and in infant meconium, indicating its ability to be transferred from mother to fetus.
A 2012 study published in the journal Environmental Science & Technology noted that children are especially exposed to titanium dioxide because of the food that contains the food additive and is particularly marketed to children, including candy and cakes.
Recent policy changes in regard to titanium dioxide
EU ban on titanium dioxide
The European Commission banned titanium dioxide as a food additive in the EU in 2022 after the European Food Safety Authority (EFSA) conducted an updated safety assessment of E171 and concluded the panel could not eliminate concerns about its genotoxicity.
EFSA Scientific Conclusion on E171
Following a request for assessment in 2020 by the EU, the European Food Safety Authority (EFSA) assessed E171, particularly for its genotoxicity. In 2022, the agency deemed the food additive no longer safe for use.
Prof. Maged Younes, Chair of EFSA’s expert Panel on Food Additives and Flavourings (FAF), wrote of the decision: “Taking into account all available scientific studies and data, the Panel concluded that titanium dioxide can no longer be considered safe as a food additive. A critical element in reaching this conclusion is that we could not exclude genotoxicity concerns after consumption of titanium dioxide particles. After oral ingestion, the absorption of titanium dioxide particles is low, however they can accumulate in the body.”
Prof. Matthew Wright, chair of EFSA’s working group on E171, noted: “Although the evidence for general toxic effects was not conclusive, on the basis of the new data and strengthened methods we could not rule out a concern for genotoxicity and consequently we could not establish a safe level for daily intake of the food additive.”
FDA’s response
Following the EU’s ban on E171, the FDA told the Guardian that, based on current evidence, titanium dioxide as a food additive is safe. “The available safety studies do not demonstrate safety concerns connected to the use of titanium dioxide as a color additive.”
Currently, titanium dioxide as a food additive is classified as GRAS, or “generally recognized as safe.”
The FDA has not updated its general guidance on safety assessments since 2007. Within that time, there has been a significant increase in research on the confluence of toxicology, nanotechnology and human health. The EU updates its guidance regularly with new science available to offer proper safety assessments, with its most recent update published in 2021.
- Preserve your retirement with physical precious metals. Receive your free gold guide from Genesis Precious Metals to learn how.
As for titanium dioxide, the FDA approved titanium dioxide for use as a food additive in 1966. The last time the agency reviewed the additive’s safety, according to the Guardian, was in 1973.
States looking to ban titanium dioxide as a food additive
In 2023, California and New York proposed banning several food additives that are banned in Europe but legal in the United States. Titanium dioxide was among the five proposed to be banned, but in September, the additive was removed from the list of additives from the California ban list.
Australia and New Zealand review of TiO2
In 2022, a year after the EFSA recommended against the use of E171, the Food Standards Australia New Zealand (FSANZ) conducted its own reassessment of titanium dioxide as a food additive. The agency concluded that titanium dioxide was indeed safe to use as a food additive. The United Kingdom and Canada came to similar conclusions.
Journalism
- Food additive nanoparticles could negatively affect your gut health, by Jillian McCarthy, Binghamton University, May 4, 2023
- Food additive or carcinogen? The growing list of chemicals banned in EU but used in US, by Mikaela Conley, The Guardian, June 23, 2022
- Public health groups urge FDA to cancel titanium dioxide in food, by Center for Science in the Public Interest, May 30, 2023
- Oman Bans Food Products Containing Titanium Dioxide, by Gulf News Report, July 23, 2023
- Titanium Dioxide: E171 no longer considered safe when used as a food additive by European Food Safety Authority, May 6, 2021
- Health advocates urge US regulators to ban common food coloring additive, by Tom Perkins, The Guardian, June 2, 2023
- A Lawsuit Claims Skittles Are Unfit for Consumption. Experts Weigh in, by Rachel Rabkin Peachman, The New York Times, July 26, 2022
- The trouble with titanium dioxide, by Siloam Springs Regional Hospital, Herald Leader, October 4, 2023
Five Things New “Preppers” Forget When Getting Ready for Bad Times Ahead
The preparedness community is growing faster than it has in decades. Even during peak times such as Y2K, the economic downturn of 2008, and Covid, the vast majority of Americans made sure they had plenty of toilet paper but didn’t really stockpile anything else.
Things have changed. There’s a growing anxiety in this presidential election year that has prompted more Americans to get prepared for crazy events in the future. Some of it is being driven by fearmongers, but there are valid concerns with the economy, food supply, pharmaceuticals, the energy grid, and mass rioting that have pushed average Americans into “prepper” mode.
There are degrees of preparedness. One does not have to be a full-blown “doomsday prepper” living off-grid in a secure Montana bunker in order to be ahead of the curve. In many ways, preparedness isn’t about being able to perfectly handle every conceivable situation. It’s about being less dependent on government for as long as possible. Those who have proper “preps” will not be waiting for FEMA to distribute emergency supplies to the desperate masses.
Below are five things people new to preparedness (and sometimes even those with experience) often forget as they get ready. All five are common sense notions that do not rely on doomsday in order to be useful. It may be nice to own a tank during the apocalypse but there’s not much you can do with it until things get really crazy. The recommendations below can have places in the lives of average Americans whether doomsday comes or not.
Note: The information provided by this publication or any related communications is for informational purposes only and should not be considered as financial advice. We do not provide personalized investment, financial, or legal advice.
Secured Wealth
Whether in the bank or held in a retirement account, most Americans feel that their life’s savings is relatively secure. At least they did until the last couple of years when de-banking, geopolitical turmoil, and the threat of Central Bank Digital Currencies reared their ugly heads.
It behooves Americans to diversify their holdings. If there’s a triggering event or series of events that cripple the financial systems or devalue the U.S. Dollar, wealth can evaporate quickly. To hedge against potential turmoil, many Americans are looking in two directions: Crypto and physical precious metals.
There are huge advantages to cryptocurrencies, but there are also inherent risks because “virtual” money can become challenging to spend. Add in the push by central banks and governments to regulate or even replace cryptocurrencies with their own versions they control and the risks amplify. There’s nothing wrong with cryptocurrencies today but things can change rapidly.
As for physical precious metals, many Americans pay cash to keep plenty on hand in their safe. Rolling over or transferring retirement accounts into self-directed IRAs is also a popular option, but there are caveats. It can often take weeks or even months to get the gold and silver shipped if the owner chooses to close their account. This is why Genesis Gold Group stands out. Their relationship with the depositories allows for rapid closure and shipping, often in less than 10 days from the time the account holder makes their move. This can come in handy if things appear to be heading south.
Lots of Potable Water
One of the biggest shocks that hit new preppers is understanding how much potable water they need in order to survive. Experts claim one gallon of water per person per day is necessary. Even the most conservative estimates put it at over half-a-gallon. That means that for a family of four, they’ll need around 120 gallons of water to survive for a month if the taps turn off and the stores empty out.
Being near a fresh water source, whether it’s a river, lake, or well, is a best practice among experienced preppers. It’s necessary to have a water filter as well, even if the taps are still working. Many refuse to drink tap water even when there is no emergency. Berkey was our previous favorite but they’re under attack from regulators so the Alexapure systems are solid replacements.
For those in the city or away from fresh water sources, storage is the best option. This can be challenging because proper water storage containers take up a lot of room and are difficult to move if the need arises. For “bug in” situations, having a larger container that stores hundreds or even thousands of gallons is better than stacking 1-5 gallon containers. Unfortunately, they won’t be easily transportable and they can cost a lot to install.
Water is critical. If chaos erupts and water infrastructure is compromised, having a large backup supply can be lifesaving.
Pharmaceuticals and Medical Supplies
There are multiple threats specific to the medical supply chain. With Chinese and Indian imports accounting for over 90% of pharmaceutical ingredients in the United States, deteriorating relations could make it impossible to get the medicines and antibiotics many of us need.
Stocking up many prescription medications can be hard. Doctors generally do not like to prescribe large batches of drugs even if they are shelf-stable for extended periods of time. It is a best practice to ask your doctor if they can prescribe a larger amount. Today, some are sympathetic to concerns about pharmacies running out or becoming inaccessible. Tell them your concerns. It’s worth a shot. The worst they can do is say no.
If your doctor is unwilling to help you stock up on medicines, then Jase Medical is a good alternative. Through telehealth, they can prescribe daily meds or antibiotics that are shipped to your door. As proponents of medical freedom, they empathize with those who want to have enough medical supplies on hand in case things go wrong.
Energy Sources
The vast majority of Americans are locked into the grid. This has proven to be a massive liability when the grid goes down. Unfortunately, there are no inexpensive remedies.
Those living off-grid had to either spend a lot of money or effort (or both) to get their alternative energy sources like solar set up. For those who do not want to go so far, it’s still a best practice to have backup power sources. Diesel generators and portable solar panels are the two most popular, and while they’re not inexpensive they are not out of reach of most Americans who are concerned about being without power for extended periods of time.
Natural gas is another necessity for many, but that’s far more challenging to replace. Having alternatives for heating and cooking that can be powered if gas and electric grids go down is important. Have a backup for items that require power such as manual can openers. If you’re stuck eating canned foods for a while and all you have is an electric opener, you’ll have problems.
Don’t Forget the Protein
When most think about “prepping,” they think about their food supply. More Americans are turning to gardening and homesteading as ways to produce their own food. Others are working with local farmers and ranchers to purchase directly from the sources. This is a good idea whether doomsday comes or not, but it’s particularly important if the food supply chain is broken.
Most grocery stores have about one to two weeks worth of food, as do most American households. Grocers rely heavily on truckers to receive their ongoing shipments. In a crisis, the current process can fail. It behooves Americans for multiple reasons to localize their food purchases as much as possible.
Long-term storage is another popular option. Canned foods, MREs, and freeze dried meals are selling out quickly even as prices rise. But one component that is conspicuously absent in shelf-stable food is high-quality protein. Most survival food companies offer low quality “protein buckets” or cans of meat, but they are often barely edible.
Prepper All-Naturals offers premium cuts of steak that have been cooked sous vide and freeze dried to give them a 25-year shelf life. They offer Ribeye, NY Strip, and Tenderloin among others.
Having buckets of beans and rice is a good start, but keeping a solid supply of high-quality protein isn’t just healthier. It can help a family maintain normalcy through crises.
Prepare Without Fear
With all the challenges we face as Americans today, it can be emotionally draining. Citizens are scared and there’s nothing irrational about their concerns. Being prepared and making lifestyle changes to secure necessities can go a long way toward overcoming the fears that plague us. We should hope and pray for the best but prepare for the worst. And if the worst does come, then knowing we did what we could to be ready for it will help us face those challenges with confidence.